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Abstract 

The method for comparison of two sets of phases 
corresponding to possibly different symmetrically 
equivalent positions of the origin of the unit cell is 
based on a minimization of the mean square deviation 
of the corresponding Fourier maps representing 
different estimates of electron density. The method 
can be useful for testing the efficiency of phase- 
determining procedures. 

Introduction 

Sufficiently sensitive, reliable and simple criteria for 
establishing which phase set best approaches the cor- 
rect crystal structure are useful when comparing the 
efficiency of different phase-determining procedures. 
A number of different criteria found in the literature 
and used for a judgement of the quality of phases 
are not free from bias, especially those for non- 
centrosymmetric structures. These criteria are gen- 
erally based either on a comparison of the resulting 
Fourier maps with the expected model of the 
molecular structure or on a direct calculation of some 
mathematical function of phase differences. 

A. Criteria identifying the structure model in a 
Fourier map 

These criteria compare the structure motives found 
in both Fourier maps. A number of such criteria can 
be found in the literature, for example, comparing 
the number of highest peaks giving a reasonable frag- 
ment of the structure or comparing the number of 
correctly localized atoms minus the number of ghost 
peaks higher than the lowest peak correctly localized. 
However, the numbers of peaks recognized in a 
Fourier map depends not only on the algorithm for 
peak identification but also on personal skill in recog- 
nizing the particular molecular fragments. Therefore, 
criteria of this type depend on factors external to the 
tested methods for the phase determination and may 
give a distorted view when comparing the efficiency 
of new methods for structure determination. 
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B. Criteria using the phase differences 

It is convenient to judge the difference between the 
Fourier maps directly in the reciprocal space without 
calculating the Fourier transforms. The integral of 
squared differences between the 'electron densities" 
Pco~r and Ptest of the 'correct' and 'tested' Fourier maps, 
respectively, is a mathematically convenient measure 
of the fit (Ha~ek, Huml, Schenk & Schagen, 1983; 
Ha~ek, 1989). The density of the mean square devi- 
ation (DMSD) between the respective weighted 
Fourier maps taken over the whole unit cell, of volume 
V, is 

DMSD= V-'  ~ (pco~-Pt~st) 2 dV. (1) 
v 

Let us suppose that [Ei] are correct and the only 
source of differences is the phase errors Aq~. The 
condition (1) can then be written in the convenient 
form (Hagek, 1989) 

D M S D :  V-2E IEil 2 sin 2 A~oi. (2) 
i 

However, a direct calculation of phase differences 
A~pi is not possible, since both sets of phases probably 
correspond to different origins of the unit cell. The 
allowance introduced in many direct-method pro- 
grams to fix the starting set of phases at some preselec- 
ted values is not strictly realistic because of the cumu- 
lation of phase errors during the process of phase 
determination. When large phase errors are expected, 
the average origin for the whole set of phases may 
differ significantly from the origin initially fixed by 
the origin-fixing phases. The resulting differences 
between phases may be significantly overestimated 
by some unknown value, which differs for different 
phase sets under test. To get a method for comparing 
two sets of phases, the actual differences have to be 
calculated. 

Let us suppose that Ai (i = 1 , . . . ,  n) are some esti- 
mates of phases with diffraction vectors Hi ( i=  
1 , . . . ,  n) whilst Bi (i = 1 , . . . ,  n) are other estimates 
of these phases for an arbitrarily chosen origin of the 
unit cell and enantiomorph. Then the actual differ- 
ences Aq~i to be looked for can be expressed as 

A~i = Ai - sBi + 27fro • Hi (mod 27r), (3) 
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where the vector r0 = (x, y, z) is an unknown transla- 
tion vector befween the two origins and Hi is the 
diffraction vector of the phases Ai (and Bi). The 
symbol s = ±1 is the sign representing one of two 
possible enantiomorphs. 

1. Minimization of  D M S D  as a function of  origin- 
fixing phases 

Use is made of the fact that the term involving the 
unknown translation vector ro vanishes when the 
differences are calculated between the universal struc- 
ture invariants instead of between the phases. For 
example, in the case of triplets, the sum AH + AK + AL 
(where H + K + L = 0 )  is constant, regardless of the 
position of the origin. The actual differences Xi 
between the triplet values calculated for two different 
phase sets {A} and {B} are independent of the posi- 
tion of the origin. After substitution from (3) we have 

Xi = A~H + AgOK d- A~L 

= [(AH+ AK+ AL)--S(BH+ BK+ BL)] (mod 2rr), 

(4) 

since ( H + K + L ) .  r0=0. The same sign s is chosen 
for all invariants: either +1 (ro is the optimal shift 
giving the 'best fit' between both Fourier maps) or 
-1  (to is the best shift of the enantiomorph-related 
Fourier map B with respect to the Fourier map A). 
Thus each triplet provides one equation (4) for the 
three differences A~i to be determined. 

A set of n - 3  linearly independent equations for n 
unknown differences A¢i (i = 1 , . . . ,  n) can generally 
be found. Because we are dealing with two phase sets 
Ai and Bi containing fixed phases, the only criterion 
for the choice of seminvariants forming the set of 
equations (4) is their linear independence. There is 
no need for probability considerations, which are 
necessary in direct methods for determining reliable 
and unreliable phase relations. However, it is still 
necessary to find the optimal shift of both Fourier 
maps by choosing the phase differences A~i (e.g. q~, 
q2, q3) for the phases of the origin-fixing reflexion 
(Hauptman & Karle, 1956, 1959; Rogers, 1980). 
Hence, the set of equations (4) has to be completed 
by adding the equations Aq~j = qi for some i, j for the 
origin-fixing reflexions. The actual phase differences 
(3) can then be determined as a function of at most 
three unknown variables q~, q2, q3 by solving the set 
of linear equations 

I ) . D = X ,  (5) 

where X = ( X ~ , . . . , X , )  and D = ( z ~ , . . . , z a ¢ , ) .  
Any row of the square matrix (~ corresponding to the 
N-phase universal structure invariant contains just 
N unities. Any row corresponding to the origin-fixing 
reflexions contains a single unity. All other elements 
of the matrix Q are zero. 

All the phase differences are now expressed as a 
function of at most three unknown phase differences 
ql, q2, q3 and the unknown enantiomorph coefficient 
s = +1, i.e. A~i =f~(s, ql, a2, q3)- After substitution in 
(2), we have the criterion for the difference between 
two phase sets: 

D M S D =  V-2E IE, l 2 sin2 [f~(s, ql, q2, q3)] 
i 

= minimum. (6) 

The number of origin-fixing phases changes from 0 
to 3 and some of them can assume only a few (usually 
two) discrete values with different space groups. It 
makes the minimization of (6) much easier, in par- 
ticular for centrosymmetric space groups (with eight 
calculations of the function value). For Im3, Ia3, 
Im3m and Ia3d, the origin is determined uniquely 
and the phase differences (3) are a priori unbiased 
(i.e. r0 = 0). 

2. Minimization of  D M S D  as a function of  the shift 
vector ro 

The phase differences (3) can be substituted 
directly into (2) giving the optimal shift ro correspond- 
ing to the minimum value of 

D M S D =  V-3~,[E,12sin2(A,-sB~+27rro. Hi) (7) 
i 

with respect to three components of the vector r0 = 
(x, y, z). The minimization must be done twice (for 
s = +1 and s = -1) .  The minimum DMSD is the mean 
square difference between the electron densities of 
the weighted Fourier maps (E maps) to be compared 
and is therefore simultaneously a natural measure of 
the fit between the two phase sets. However, the 
minimization method has to be chosen with care to 
ensure the convergence to the global minimum in 
every case. Similarly to (6), the dimensionality of (7) 
changes from 0 to 4 accordingly to the space group. 

For centrosymmetrical structures, the DMSD is 
simply a minimum of eight calculations (at most) of 
the function 

DMSD = V -2 Z IE, I 2, (8) 
i 

for different symmetrically equivalent origins, where 
the summation runs only over reflexions with different 
phases. 

Concluding remarks 
The methods used for comparing the different struc- 
ture solutions have been evaluated for uniqueness of 
solution and efficiency. Direct comparison of struc- 
ture patterns in direct space by calculating the DMSD 
(1) is too time consuming because it requires two 
Fourier transforms and the optimization of the shift 
between both patterns accompanied by integration 
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over a dense three-dimensional grid in the direct 
space. 

To perform this task directly in the reciprocal space, 
two procedures have been proposed in this paper. 
The first is based on calculations of the DMSD 
using triplet invariants (6), where the arguments of 
goniometric functions have to be calculated by solv- 
ing the set of linear equations (5). The second is 
based on minimizing the right-hand side of (7) [or 
(8) for centrosymmetrical structures]. It has been 
shown that the second procedure is preferable 
because of its simplicity. 

This work was supported by ZWO and grant no. 
45028 of CSAS. 
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Abstract 

A formulation of the phase problem in terms of the 
phases of all the experimentally available structure 
factors is presented, based on exact algebraic relations 
between Fourier coefficients, which express atomicity. 
A criterion is constructed whose minimum is attained 
by the true phases. All the observed data are used to 
minimize the sum of the squared residuals of an 
overdetermined system of equations, thereby 
minimizing the influence of errors upon the estimated 
phases. The approach brings together the theoretical 
power of matrix methods and the stability of over- 
determined equations. The hypothesis of positivity of 
the electron density is not used. 

Notation 

N number of atoms in the unit cell 
za number of electrons of the ath atom 
s. scattering length of the ath nucleus 

iz/(; ~¢ z 2 (X-ray case) a 
1 

n, = N s 2 (neutron case) a 
1 

V volume of the unit cell 
k, h, hp reciprocal vectors 
ra vector of coordinates of the ath atom 

N 
E(h) = ~ na exp (21rib. ra) normalized structure 

a =, factor 
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E(h)* complex conjugate of E(h) 
~ab Kronecker delta 
® convolution 
F, F -1 direct and inverse Fourier transforms, respec- 

tively 
Mslts, s = 1 , . . . ,  g transformation matrix Ms and 

translation ts corresponding to 
the sth symmetry operation 

Introduction 

The property of positivity of the electron density has 
played such an important role in the mathematical 
foundations of direct methods that it is now generally 
accepted that non-negativity is sufficient a priori 
information to determine a unique atomic structure. 
The practical success of these methods in producing 
atomic maps, i.e. maps that can be interpreted in 
terms of atomic distributions, has confirmed this point 
of view. 

On the other hand, maximum-entropy techniques 
have shown that positive maps that satisfy a large 
number of experimental data, but which are not 
atomic, can routinely be obtained (Navaza, 1986; 
Decarreau, Hilhorst, Lemarrchal & Navaza, 1992). 
Since these techniques provide the statistically most 
unbiased estimates possible with the given informa- 
tion, we conclude that atomicity cannot be recovered 
if only information of positivity of the electron density 
and knowledge of the moduli of a subset of its Fourier 
coefficients are used. In other words, positivity is not 
a sufficient condition; we will also see that neither is 
it a necessary condition. 
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